IL-4 induces columnar-like differentiation of esophageal squamous epithelium through JAK/PI3K pathway: possible role in pathogenesis of Barrett's esophagus.

نویسندگان

  • Jing Shan
  • Tadayuki Oshima
  • Ricard Farre
  • Hirokazu Fukui
  • Jiro Watari
  • Hiroto Miwa
چکیده

Barrett's esophagus is characterized by a distinct Th2-predominant cytokine profile (IL-4) from in vivo or ex vivo evidence. The detailed role of cytokines in Barrett's esophagus, particularly whether Th2 cytokines are causative factors driving metaplastic processes, remains unknown. In this study, air-liquid interface-cultured human esophageal epithelial cells were stimulated by a Th2 cytokine, IL-4, and Th1 cytokines, TNF-α and IL-1β, continuously for 10 days. Barrier function was determined by transepithelial electrical resistance. Morphological changes were investigated by hematoxylin and eosin staining. Keratin profile (keratin 7, 8, 13, and 14) and squamous differentiation markers (involucrin) were investigated by RT-quantitative PCR, Western blotting, and immunohistochemical staining. Pharmacological inhibitors were used to identify the underlying cellular signaling. We report that IL-4, TNF-α, and IL-1β decrease barrier function, but only IL-4 significantly increases cell layers and changes cell morphology. IL-4 time dependently downregulates the expression levels of the squamous cell markers involucrin and keratin 13 and upregulates the expression levels of the columnar cell markers keratin 7 and 8. Neither TNF-α nor IL-1β shows any effect on these indexes. JAK inhibitor I and PI3K inhibitors significantly block the IL-4-induced changes in the levels of keratin 8 and 13. In conclusion, IL-4 inhibits squamous differentiation program of esophageal epithelial cells and induces differentiation toward columnar cells through the JAK/PI3K pathway. Thus IL-4 may be involved in the early stages of Barrett's esophagus development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sox9 drives columnar differentiation of esophageal squamous epithelium: a possible role in the pathogenesis of Barrett's esophagus.

The molecular mechanism underlying the development of Barrett's esophagus (BE), the precursor to esophageal adenocarcinoma, remains unknown. Our previous work implicated sonic hedgehog (Shh) signaling as a possible driver of BE and suggested that bone morphogenetic protein 4 (Bmp4) and Sox9 were downstream mediators. We have utilized a novel in vivo tissue reconstitution model to investigate th...

متن کامل

The Esophageal Squamous Epithelial Cell—Still a Reasonable Candidate for the Barrett’s Esophagus Cell of Origin?

Barrett's esophagus is the metaplastic change of the squamous epithelium lining the distal esophagus into an intestinalized columnar epithelium that predisposes to esophageal adenocarcinoma development. The cell that gives rise to Barrett's esophagus has not been identified definitively, although several sources for the Barrett's esophagus cell of origin have been postulated. One possible sourc...

متن کامل

Hedgehog signaling regulates FOXA2 in esophageal embryogenesis and Barrett's metaplasia.

Metaplasia can result when injury reactivates latent developmental signaling pathways that determine cell phenotype. Barrett's esophagus is a squamous-to-columnar epithelial metaplasia caused by reflux esophagitis. Hedgehog (Hh) signaling is active in columnar-lined, embryonic esophagus and inactive in squamous-lined, adult esophagus. We showed previously that Hh signaling is reactivated in Bar...

متن کامل

Cdx1 and c-Myc Foster the Initiation of Transdifferentiation of the Normal Esophageal Squamous Epithelium toward Barrett's Esophagus

BACKGROUND Barrett's esophagus is a premalignant condition whereby the normal stratified squamous esophageal epithelium undergoes a transdifferentiation program resulting in a simple columnar epithelium reminiscent of the small intestine. These changes are typically associated with the stratified squamous epithelium chronically exposed to acid and bile salts as a result of gastroesophageal refl...

متن کامل

Cdx-2 expression in squamous and metaplastic columnar epithelia of the esophagus.

The molecular pathogenesis of Barrett's esophagus is poorly understood. Evidence suggests that at a phenotypic level, the metaplastic process begins with the transformation of squamous epithelium in the distal esophagus to cardiac mucosa, which subsequently becomes intestinalized. The homeobox gene Cdx-2 has been shown to be an important transcriptional regulator of embryonic differentiation an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Gastrointestinal and liver physiology

دوره 306 8  شماره 

صفحات  -

تاریخ انتشار 2014